
ACM/CMS 107 Linear Analysis & Applications Fall 2016

Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016

Introduction

Systems of ordinary differential equations (ODEs) can be used to describe many physical
processes, from the dynamics of populations to the trajectories of missiles. The general
form for such systems is as follows:

dx

dt
(t) = F (x(t), t), x(0) = x0,

where x(t) ∈ Rn for each t ≥ 0. Note that a higher order system can always be written as
a first order system in a higher dimensional space. The behavior of the solution x(t) may
be undesirable, and so it will often be of interest to control the system by, for example,
forcing it. The above system is therefore generalized to

dx

dt
(t) = F (x(t), t, u(t)), x(0) = x0,

where u : [0,∞)→ R is a control function. The function u may also depend on the state
x(t) at time t, in addition to t, to allow for feedback into the system. The question arises
of how the control u can be chosen to enforce certain behavior of the solution x.
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Figure 1: The triple pendulum on a cart.

As an example, consider a triple pendu-
lum on a cart as illustrated in Figure 1.
The state of the pendulum can be char-
acterized by the pivot angles (θ1, θ2, θ3).
Under the laws of classical mechanics,
the evolution of the angles (θ1, θ2, θ3) in
time is deterministic, though their behav-
ior is chaotic and the system of differential
equations that describes their evolution is
nonlinear. It may be of interest to ask
how the cart should be moved, according
to the control u(t), to ensure that each
θi(t)→ π in a finite time so that the pen-
dulum stands up straight. The following
video illustrates the calculation and imple-
mentation of such a control:

https://www.youtube.com/watch?v=cyN-CRNrb3E

In Problem 1 we show how solutions to general linear systems of ODEs can be found via
use of the matrix exponential. In Problem 2 we introduce the notion of controllability,
and look at conditions for when this holds for linear systems. In Problem 3 we consider
partially observed systems, and look at when we can infer a system’s dynamics from
these observations using a consequence of controllability. Finally in Problem 4 we study
the systems from Problem 3 numerically, along with the Lorenz ‘63 model, which, like
the triple pendulum, is also a nonlinear and chaotic system.

https://www.youtube.com/watch?v=cyN-CRNrb3E


Problem 1. Linear ODEs (20 points)

(a) Let A ∈ Rn×n. Define the exponential of A by the Taylor series

eA =

∞∑
k=0

1

k!
Ak.

Show that for each t ≥ 0,

d

dt

(
etA
)

= AetA = etAA,

assuming any results about the exponential from lectures and problem sets.

(b) Let A ∈ Rn×n and B ∈ Rn×m.

(i) Using part (a), write down the solution to the linear system

dx

dt
(t) = Ax(t), x(0) = x0.

If x0 ∈ Cn is an eigenvector of A with eigenvalue λ ∈ C, describe the behavior
of x(t) based on the value of λ.

(ii) Let u : [0,∞)→ Rm be a control function. Consider the forced linear system
given by

dx

dt
(t) = Ax(t) +Bu(t), x(0) = x0.

The solution to this system is given by

x(t) = etAx0 +

∫ t

0
e(t−s)ABu(s) ds.

By use of a suitable integrating factor, derive this solution.

Problem 2. Controllability (25 points)

We define the space of unrestricted controls U as the set of functions u : [0,∞)→ Rm:

U = {u : [0,∞)→ Rm}.

It is often of interest in control theory to work with a subset Uad ⊂ U , referred to as
the set of admissible controls, however in this assignment we work only with unrestricted
controls.

Let A ∈ Rn×n and B ∈ Rn×m. Given a control u ∈ U , consider the response x : [0,∞)→
Rn defined via the autonomous system

dx

dt
(t) = Ax(t) +Bu(t), x(0) = x0 (1)

for some x0 ∈ Rn. If u(·) depends only upon the initial condition x0, it is called an
open-loop control. If it depends on the path x(·), it it called a closed-loop control. A
closed-loop control allows feedback into the system, whereas an open-loop control does
not.

We introduce the notion of controllability for this system:



Definition (Controllability). For each time t > 0, the fixed time t controllable set is
defined by

C(t) = {x0 ∈ Rn : there exists u ∈ U with x(t) = 0}.

The controllable set is defined by

C =
⋃
t>0

C(t).

If C = Rn, we will say that the system is controllable. We will alternatively say that
(A,B) is controllable in this case.

The system is hence controllable if it can be controlled to hit zero in a finite time, from
any starting point. A useful characterization of controllability is given in terms of the
controllability matrix G(A,B) ∈ Rn×mn of (1). This is defined by

G(A,B) =
(
B,AB,A2B, . . . , An−1B

)
.

Theorem. (A,B) is controllable if and only if rank
(
G(A,B)

)
= n.

Proof of this theorem may be found in, for example, [1].

(a) The Cayley-Hamilton theorem states that every square matrix satisfies its own char-
acteristic polynomial. Using this, explain why

rank
(
G(A,B), AkB

)
= rank

(
G(A,B)

)
for any k ≥ n.

(b) Let n = m = 2.

(i) Let B =

(
1 0
0 1

)
. Under what conditions on A is the system controllable?

(ii) Let B =

(
1 0
0 0

)
. Under what conditions on A is the system controllable?

(c) Let n = 3, m = 1, and define A ∈ Rn×n by

A =

0 1 0
0 −1 1
0 0 −1

 .

Consider the three cases

B =

1
0
0

 ,

0
1
0

 , and

0
0
1

 .

For which of these choices of B is the system controllable? In the case(s) where the
system is not controllable, find the controllable set C.



Problem 3. Observer (25 points)

Suppose that we wish to recover a signal x(t) that is known to satisfy the system

dx

dt
(t) = Ax(t), x(0) = x0,

but we do not know the initial condition x0. We do not observe x(t) directly, but instead
have observations given by

y(t) = Hx(t)

for some H ∈ Rm×n. We wish to use these observations to determine x(t) for sufficiently
large t. To this end, we consider the system given by

dz

dt
(t) = Az(t) +B

(
y(t)−Hz(t)

)
, z(0) = z0 (2)

for some B ∈ Rn×m. This is of the form (1) with the closed loop control u = y −Hz.
The reasoning for this is that when z is close to x, so that y is close to Hz, the dynamics
of z should be close to those of x. In particular, if z(t∗) = x(t∗) for some t∗ ≥ 0, then
z(t) = x(t) for all t ≥ t∗. In general we cannot guarantee that the positions of z and x
will ever coincide, but we can instead aim for z(t) and x(t) to become arbitrarily close
for large times t.

(a) Define the error e(t) = z(t)− x(t). Show that e(t) satisfies the equation

de

dt
(t) = (A−BH)e(t), e(0) = z0 − x0

and hence give criterion that ensure e(t)→ 0 as t→∞ for any choice of z0.

(b) If (A,B) is controllable, it is known that there exists an observation matrix H ∈
Rm×n such that e(t)→ 0.

(i) Consider the cases from Problem 2(b)-(c) which were controllable. By hand,
find observation matrices H such that the e(t)→ 0.

(ii) In the cases from Problem 2(b)-(c) where (A,B) were not controllable, can you
find H ∈ Rm×n such that e(t)→ 0 for any z0? Investigate either numerically
or by hand, choosing at least one example from each of 2(b) and 2(c) where
controllability does not hold, and looking at the spectrum of A − BH for
different choices of H.

Remark. Above we are given the matrices A,B, and use controllability to see that
we can choose an observation matrix H that causes e(t) → 0. There is also a dual
notion to controllability, called observability. If we are instead given the matrices
A,H, and the pair (A,H) is observable, then it can be shown that we can choose a
matrix B such that e(t)→ 0.

Problem 4. Numerics (30 points)

(a) Implement the the systems (1), (2) in MATLAB, for arbitrary A ∈ Rn×n and B ∈
Rn×m. You can use the forms of the solutions given in Problem 1, solve using one
of MATLAB’s built-in ODE solvers such as ode45, or implement a Runge-Kutta
method directly.



(i) Choose an example from Problem 2(b) where you know that e(t)→ 0 for any
z0. Fix x0, and verify that this is the case by plotting (on the same axes) the
trajectories of e(·) for variety of choices of z0.

(ii) Let n = m = 3. Define A ∈ R3×3 by

A =

0.1 0 0
0 0 −1
0 1 0


and let B = I. Observe that rank

(
G(A,B)

)
= 3, and so there exists an

observation matrix H ∈ R3×3 that drives the error to zero.

Fix x0 = (1, 1, 0) and z0 = (2, 2, 2). Consider the three observation matrices
H given by

H =

1 0 0
0 0 0
0 0 0

 ,

0 0 0
0 1 0
0 0 0

 and

1 0 0
0 1 0
0 0 0

 .

For each H, plot the error ε(t) = ‖e(t)‖ = ‖x(t) − z(t)‖ for t ∈ [0, 50]. By
considering the trajectories of x(·) and z(·), and the structures of A,B,H,
explain the behavior of these errors.

(b) We now consider a nonlinear example. The Lorenz ‘63 model is defined as follows:

dx1
dt

(t) = σ
(
x2(t)− x1(t)

)
dx2
dt

(t) = x1(t)
(
ρ− x3(t)

)
− x2(t)

dx3
dt

(t) = x1(t)x2(t)− βx3(t)

where σ, ρ, β are scalar parameters and x1(t), x2(t), x3(t) ∈ R for each t. In what
follows we will fix σ = 10, β = 8/3 and ρ = 28; it is known that with these choices
the system is chaotic.

We can write the above system more compactly as

dx

dt
(t) = F (x(t)), x(0) =

(
x1(0), x2(0), x3(0)

)
. (3)

where now F : R3 → R3 is nonlinear. Suppose that we have observations

y(t) = Hx(t)

for some H ∈ R3×3, and analogously to the linear case (2), consider the controlled
system

dz

dt
(t) = F (z(t)) +B

(
y(t)−Hz(t)

)
, z(0) =

(
z1(0), z2(0), z3(0)

)
. (4)

for some B ∈ R3×3.



(i) Implement both systems (3) and (4) in MATLAB, for arbitrary observation
and control matrices H,B. Plot the solution to (3) for a number of initial
conditions and t ∈ [0, 50]. Observe the sensitivity of the solution to the choice
of initial condition: two distinct but arbitrarily close initial conditions can
lead to very different trajectories.

(ii) We consider the case where we only observe one component of the solution,
so that H ∈ R3×3 is given by

H =

1 0 0
0 0 0
0 0 0

 ,

0 0 0
0 1 0
0 0 0

 or

0 0 0
0 0 0
0 0 1

 .

Additionally we assume B = αI for some α > 0, where I is the identity
matrix, and consider t ∈ [0, 50].

Fix x(0) and z(0), with ‖x(0) − z(0)‖ ≥ 10. Define the error ε(t) = ‖x(t) −
z(t)‖. For each choice of H above, can you find α > 0 such that that ε(t) ≈ 0
for large t? If this is the case, how small can you take α for this to hold?
Produce a plot of the error ε(t) for each choice of H, with ε(t) becoming small
if possible.
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