PUBLICATIONS

  • 2022

    Bayesian neural network priors for edge-preserving inversion

    C. Li, M. M. Dunlop and G. Stadler
    Inverse Problems and Imaging 16 5

  • A gradient-free subspace-adjusting ensemble sampler for infinite-dimensional Bayesian inverse problems

    M. M. Dunlop and G. Stadler
    Submitted

  • 2021

    Stability of Gibbs posteriors from the Wasserstein loss for Bayesian Full Waveform Inversion

    M. M. Dunlop and Y. Yang
    SIAM/ASA Journal on Uncertainty Quantification 9 4

  • 2020

    New likelihood functions and level-set prior for Bayesian full-waveform inversion

    M. M. Dunlop and Y. Yang
    SEG Technical Program Expanded Abstracts 2020

  • Large data and zero noise limits of graph-based semi-supervised learning algorithms

    M. M. Dunlop, D. Slepcev, A. M. Stuart and M. Thorpe
    Applied and Computational Harmonic Analysis 49 2

  • Hyperparameter estimation in Bayesian MAP estimation: parameterizations and consistency

    M. M. Dunlop, T. Helin and A. M. Stuart
    SMAI Journal of Computational Mathematics 6

  • Reconciling Bayesian and perimeter regularization for binary inversion

    O. R. A. Dunbar, M. M. Dunlop, C. M. Elliott, V. Ha Hoang and A. M. Stuart
    SIAM Journal on Scientific Computing 42 4

  • 2019

    Multiplicative noise in Bayesian inverse problems: well-posedness and consistency of MAP estimators

    M. M. Dunlop
    Submitted

  • 2018

    Dimension-robust MCMC in Bayesian inverse problems

    V. Chen, M. M. Dunlop, O. Papaspiliopoulos and A. M. Stuart
    Submitted

  • How deep are Deep Gaussian Processes?

    M. M. Dunlop, M. Girolami, A. M. Stuart and A. L. Teckentrup
    Journal of Machine Learning Research 19 54

  • Iterative updating of model error for Bayesian inversion

    D. Calvetti, M. M. Dunlop, E. Somersalo and A. M. Stuart
    Inverse Problems 34 2

  • 2017

    Hierarchical Bayesian level set inversion

    M. M. Dunlop, M. A. Iglesias and A. M. Stuart
    Statistics and Computing 27 6

  • 2016

    The Bayesian formulation of EIT: analysis and algorithms

    M. M. Dunlop and A. M. Stuart
    Inverse Problems and Imaging 10 4

  • MAP estimators for piecewise continuous inversion

    M. M. Dunlop and A. M. Stuart
    Inverse Problems 32 10

  • Analysis and Computation for Bayesian Inverse Problems

    M. M. Dunlop
    PhD Thesis

RÉSUMÉ

EDUCATION

    • 2013-2016  
    • PhD Mathematics and Statistics
      University of Warwick

    • 2012-2013  
    • MSc Mathematics and Statistics
      University of Warwick

    • 2008-2012  
    • MMath Mathematics                  
      University of Warwick

EMPLOYMENT

    • 2023-           
    • Quantitative Analyst
      Gambit Research

    • 2019-2022  
    • Postdoctoral Associate
      Courant Institute of Mathematical Sciences

    • 2018-2019  
    • Postdoctoral Researcher
      University of Helsinki

    • 2016-2018  
    • Postdoctoral Scholar
      California Institute of Technology

TEACHING

CMS/ACM 107 Introduction to Linear Analysis with Applications (Fall 2017)

CMS/ACM 107 Introduction to Linear Analysis with Applications (Fall 2016)